FuzzyBinomialNaiveBayes
Fuzzy Binomial Naive Bayes
Examples
set.seed(1) # determining a seed
class1 <- data.frame(vari1 = rbinom(100,size = 10, prob = 0.2),
vari2 = rbinom(100,size = 10, prob = 0.2),
vari3 = rbinom(100,size = 10, prob = 0.2), class = 1)
class2 <- data.frame(vari1 = rbinom(100,size = 10, prob = 0.5),
vari2 = rbinom(100,size = 10, prob = 0.5),
vari3 = rbinom(100,size = 10, prob = 0.5), class = 2)
class3 <- data.frame(vari1 = rbinom(100,size = 10, prob = 0.8),
vari2 = rbinom(100,size = 10, prob = 0.8),
vari3 = rbinom(100,size = 10, prob = 0.8), class = 3)
data <- rbind(class1,class2,class3)
# Splitting into Training and Testing
split <- caTools::sample.split(t(data[, 1]), SplitRatio = 0.7)
Train <- subset(data, split == "TRUE")
Test <- subset(data, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -4]
fit_NBT <- FuzzyBinomialNaiveBayes(
train = Train[, -4],
cl = Train[, 4], cores = 2
)
pred_NBT <- predict(fit_NBT, test)
head(pred_NBT)
#> [1] 1 1 1 1 1 1
#> Levels: 1 2 3
head(Test[, 4])
#> [1] 1 1 1 1 1 1