
Fuzzy Gaussian Naive Bayes Classifier Zadeh-based
Source:R/FuzzyGaussianNaiveBayes.R
FuzzyGaussianNaiveBayes.Rd
FuzzyGaussianNaiveBayes
Fuzzy Gaussian Naive Bayes Classifier Zadeh-based
Arguments
- train
matrix or data frame of training set cases.
- cl
factor of true classifications of training set
- cores
how many cores of the computer do you want to use to use for prediction (default = 2)
- fuzzy
boolean variable to use the membership function
References
Moraes RM, Machado LS (2012). “Online Assessment in Medical Simulators Based on Virtual Reality Using Fuzzy Gaussian Naive Bayes.” Journal of Multiple-Valued Logic & Soft Computing, 18.
Examples
set.seed(1) # determining a seed
data(iris)
# Splitting into Training and Testing
split <- caTools::sample.split(t(iris[, 1]), SplitRatio = 0.7)
Train <- subset(iris, split == "TRUE")
Test <- subset(iris, split == "FALSE")
# ----------------
# matrix or data frame of test set cases.
# A vector will be interpreted as a row vector for a single case.
test <- Test[, -5]
fit_GNB <- FuzzyGaussianNaiveBayes(
train = Train[, -5],
cl = Train[, 5], cores = 2
)
pred_GNB <- predict(fit_GNB, test)
head(pred_GNB)
#> [1] setosa setosa setosa setosa setosa setosa
#> Levels: setosa versicolor virginica
head(Test[, 5])
#> [1] setosa setosa setosa setosa setosa setosa
#> Levels: setosa versicolor virginica